Автоматизация систем отопления и микроклимата

Автоматизация систем отопления

– автоматическое регулирование температуры воды в местной сети отопления при присоединении через подогревательную установку.

Внедрение автоматического регулирования позволяет сэкономить 10 % топлива, идущего на отопление.

Схема автоматизированного узла по независимой схеме присоединения к тепловой сети смешанной системы горячего водоснабжения приведена на рис. 3.13.

Регулятор температуры прямого действия типа РТ (1-1, 23) получает импульс на регулирование в зависимости от температуры горячей воды, поступающей в сеть горячего водоснабжения, и воздействует на подачу теплоносителя из теплосети в подогреватель. Такое присоединение систем горячего водоснабжения к тепловым сетям называют способом посредством водоводяных подогревателей (независимая схема).

Системы горячего водоснабжения в зависимости от назначения объекта бывают с циркуляцией воды при отсутствии водоразбора или при незначительном водоразборе и с циркуляцией только при её разборе (тупиковая система).

На рис. 3.13 циркуляция воды осуществляется центробежным насосом 3. При отсутствии водоразбора или незначительном водоразборе вода в системе горячего водоснабжения может значительно охладиться. Чтобы этого избежать, предусмотрен центробежный насос 3, который включается автоматически, если температура в системе горячего водоснабжения снизится до 45ºC, начинается принудительная циркуляция воды в системе и её подогрев в подогревателе. Давление воды из водопровода контролируется манометром 16, давление воды после подогревателя – манометром 14, постоянное давление теплоносителя в прямой линии поддерживается регулятором давления прямого действия типа РД (17-1, 2, 3). Вода из обратной линии подмешивается насосом 4; насос 5 резервный. С целью уменьшения влияния переменного напора сети в системе отопления на подающем трубопроводе устанавливают регулятор расхода прямого действия типа РР (2-1, 2, 3).

Защита системы от опорожнения осуществляется регулятором давления прямого действия типа РД (17-1, 2, 3), установленным на обратном трубопроводе.

Рис. 3.13. Схема автоматизации теплового узла смешанной системы горячего водоснабжения

Рис. 3.14. Схема автоматизации теплового узла с двухступенчатой системой присоединения горячего водоснабжения к тепловой сети

Для исследовательских целей на входе теплового узла смешанной системы горячего водоснабжения могут быть установлены приборы, контролирующие и регистрирующие количество теплоносителя из теплосети. Температура теплоносителя контролируется вторичным показывающим прибором типа КПМ (4-1, 2); расход теплоносителя измеряется вторичным прибором типа КСД-3. Таким образом, зная температуру теплоносителя T и расход теплоносителя F, можно контролировать в течение смены, дня, месяца количество теплоносителя , потребляемое данным тепловым узлом.

Схема автоматизации теплового узла по независимой схеме двухступенчатой системы присоединения горячего водоснабжения к тепловым сетям приведена на рис. 3.14.

Для поддержания постоянного расхода теплоносителя на подающем трубопроводе установлен регулятор расхода прямого действия типа РР (8-1, 2, 3), исполнительный механизм (8-4) этого регулятора регулирует также расход теплоносителя в водоподогреватель II ступени. Температура воды в водоподогревателе II ступени регулируется регулятором температуры прямого действия типа ТРБ (регулятор температуры биметаллический) (1-1, 2, 3, 4).

Давление воды перед сетевыми насосами 4, 5 контролируется манометрами 2, 3, давление после насосов контролируется манометрами 10, 11 с включением соответствующей сигнализации HL4, HL5.

В системе горячего водоснабжения на вводе воды из водопровода установлены хозяйственные насосы 1, 2, 3 для создания достаточного давления, которые включаются автоматически через блок управления и вручную универсальным переключателем. Давление после насосов контролируется манометрами 12, 13, 14 с включением соответствующих сигнальных ламп HL1, HL2, HL3.

Защита системы горячего водоснабжения от опорожнения осуществляется регулятором давления типа РД (9-1, 2).

Наличие сетевых насосов в системе отопления на обратном трубопроводе позволяет уменьшить диаметр трубопровода за счёт увеличения скорости воды в трубах, что даёт существенную экономию металла.

Схема автоматизации теплового узла с элеваторным присоединением к тепловым сетям представлена на рис. 3.15.

Для поддержания постоянного расхода теплоносителя на подающем трубопроводе установлен регулятор расхода прямого действия, например, типа УРРД (1-1, 2, 3). Схема присоединения теплового узла и тепловой сети элеваторная, т.е. смешивается вода горячая, поступающая из тепловой сети, с водой, возвращающейся из местной сети отопления. Давление воды до и после элеватора контролируется манометрами 5 и 6. Температура воды на прямом и обратном трубопроводах контролируется стеклянными термометрами 7,8.

На входе и выходе из теплосети для местного контроля давления установлены технические манометры 2, 3.

Расход теплоносителя из теплосети определяется водомером. Для очистки воды в схеме предусмотрены фильтры-грязевики.

Рис. 3.15. Схема автоматизации теплового узла с элеваторным присоединением к тепловым сетям

Системы отопления присоединяются к тепловым сетям по независимой схеме при необходимости изоляции системы от тепловой сети.

Автоматика систем отопления

Создание отопления в собственном доме подразумевает в качестве его обязательного элемента использование автоматики. Не будете же вы постоянно сидеть в котельной и контролировать в ручном режиме работу котла и прочие рабочие параметры самой системы. Да и комфортные условия в доме лучше обеспечить не открытыми форточками, хотя проветривание в комнатах никто и не отменял, а установлением желаемой температуры. Вот эти задачи и выполняет автоматика систем отопления.

автоматика систем отопления

Что надо автоматизировать?

Рассматривая, как осуществляется обогрев дома, необходимо отметить, что работа автоматики системы отопления должна охватывать как минимум такие ее компоненты:

  • работу нагревательного котла;
  • обеспечение для проживания комфортных условий;
  • экономию топлива и эксплуатацию оборудования в щадящем режиме.

Как правило, выбирая котел отопления, мы уже частично определяем какой будет автоматизация отопления. Дело в том, что производители качественного подобного оборудования предусматривают в конструкции блок управления отоплением.

В его задачу входит создание безопасного режима работы котла, для чего используются дополнительные датчики. Как правило, подобный контроллер системы отопления следит за безопасностью и обеспечивает:

  • защиту от перегрева теплоносителя;
  • защиту от повышения и понижения давления в системе;
  • контроль наполнения котла водой;
  • контроль давления газа в магистрали (при газовом отоплении);
  • контроль давления отводящих газов.

Часть этих функций может быть установлена по желанию заказчика (опционально), но автоматическое управление отоплением, во всяком случае, работой котла, при таком подходе будет полным.

автоматика для отопления частного дома

Об автоматическом управлении отопительной системой

Когда рассматривается автоматизация систем отопления, следует иметь в виду, что управление обогревом может осуществлять по температуре:

  • теплоносителя;
  • воздуха в доме;
  • наружного воздуха, погодозависимое.

Системы регулирования, построенные на контроле температуры теплоносителя, работают независимо от текущих условий. Следствием этого будет высокая инерционность всего процесса, низкая эффективность и неэкономичность. Лучшие результаты показывает автоматическая система отопления, работающая на поддержание установленной температуры в доме.

управление отоплением

Наиболее прогрессивным и эффективным считается погодозависимое регулирование, поскольку оперативно позволяет реагировать на изменение окружающих условий. Однако и обычные средства, осуществляющие контроль и управление системой отопления, способны обеспечить достаточно эффективную ее работу.

Как это осуществляется

Здесь надо отметить, что автоматика для отопления частного дома может быть построена с использованием самых разных приборов, работающих как автономно, так и под управлением централизованных систем.

Управление с помощью котла отопления

При таком подходе все управление отоплением сводится к установке температуры теплоносителя на котле. В этом случае начинает работать встроенная в него автоматика, для отопления, работающего подобным образом, контроля на котле вполне достаточно. Он будет поддерживать необходимую температуру теплоносителя независимо от ее значения в помещениях.

Термостатический вентиль

Пожалуй, это самый простой автоматический регулятор температуры отопления. Он ставится на каждый радиатор, и на нем (на его головке) можно установить нужное ее значение. В тех случаях, когда становится слишком жарко, срабатывает регулятор и перекрывает поступление теплоносителя в батарею. При падении температуры ниже заданного значения, вентиль открывается, и вода начинает поступать в радиатор, обогревая помещение.

автоматический регулятор температуры отопления

Такая автоматизация отопления частного дома работает без привязки к температуре теплоносителя, фактически являясь универсальной и независящей от типа используемого котла (газовый, твердотопливный, жидкостной и т. д.).

Недостатком такого подхода следует считать отсутствие экономии из-за невозможности управления котлом и расходованием топлива.

Комнатный регулятор температуры

В этом случае в помещении устанавливается специальный регулятор температуры – по сути дела, контроллер отопления. Он изменяет нагрев теплоносителя (включая или выключая горелки, регулируя подачу воды и т.д.), обеспечивая нужный режим.

контроллер отопления

Фактически в этом случае управление получается полностью электронное, отопление дома работает по командам из специального центра и может реализовать любой заданный режим работы. Если оснастить подобную структуру контроля и регулирования блоками дистанционной связи, модулем GSM, то будет сформирован автоматизированный узел управления системой отопления с возможностью удаленного доступа.

Комбинированный вариант управления

Стоит отметить, что совместная работа регулятора и термостатического вентиля создает для работы системы оптимальные условия. Контроллер управления отоплением обеспечит экономное расходование топлива и контроль температуры воздуха, а вентиль позволит в каждом помещении поддерживать нужный режим.

Для создания оптимальных параметров работы системы отопления она нуждается в средствах автоматики, которые не только поддерживают комфортные условия, но и обеспечивают существенную экономию затрат на обогрев дома.

Способы и методы автоматизации систем отопления

Способы и методы автоматизации систем отопления

Без рубрики

Мир не стоит на месте: промышленность, инженеры и ученые работают над созданием максимального комфорта для жизни людей. Системы домашнего отопления также развиваются и обновляются. Если всего 10 лет назад про датчики автоматизации обогревательных систем не слышал никто, то сегодня такие приборы и устройства широко используются населением Европы и США. Россия пробилась в число стран, которые перенимают инновации, применяя их для блага граждан.

методы автоматизации систем отопления

методы автоматизации систем отопления

Рынок предлагает массу различных моделей, в том числе с возможностью GSM управления отоплением. Чтобы сделать правильный выбор, стоит хорошенько рассмотреть принцип работы таких устройств, а также выделить их преимущества и недостатки.

Что такое автоматизированная система отопления?

Автоматизация отопления частного дома – мечта для владельца недвижимости. Она позволяет не отслеживать температуру теплоносителя, прогрева котельного оборудования или степень теплоотдачи радиаторов. За человека, все это делает специальный прибор, функционирующий в полуавтоматическом или автоматическом режиме.

Приборы автоматики отопления могут контролировать:

  • работу котельного оборудования с целью оптимизации расхода топлива;
  • температуру теплоносителя до входа в радиатор.

Принцип работы каждого автоматизирующего узла управления системой отопления заключается в использовании специальных датчиков, которые определяют температуру, после чего прикрывают или открывают клапаны. Таким образом, создаются или наоборот, убираются препятствия движения теплоносителя. Воздействие может осуществляться вручную, или посредством сигналов.

Терморегулирующий вентиль

Терморегулирующий вентиль

Какие виды приборов для автоматизации существуют?

Теперь давайте рассмотрим устройства, которые являются автоматикой для отопления частного дома.

  • Терморегулируемые вентили – приборы, со встроенными внутрь датчиками, которые контролируют степень нагрева теплоносителя в системе. Пользователь задает желаемую отметку высоких и низких температур. Таким образом, когда жидкость прогреется до предела установленного значения, кран автоматически увеличит заслонку, создавая препятствия для жидкости. С точностью наоборот все произойдет при падении до минимальной отметки.

Важно! Когда заслонка увеличивается, котел продолжает работать в прежнем режиме, поэтому помните, что такой прибор для автоматизации не экономит расход топлива, а только поддерживает нужную температуру в комнате.

  • Комнатный регулятор – устройство, предназначенное следить за температурным режимом в помещении. Устанавливается на трубопровод, но сама панель выводиться удаленно. Принцип работы такой же, как и в первом случае, поэтому описывать будет лишним.
  • Термостатический клапан. В отличие от вентиля данное устройство для автоматизации отопления частного жилья работает посредством регулирования воды. Имеет вид «тройника», к которому подводиться горячий и холодный теплоносители, а через третье отверстие выводится жидкость нужной температуры. Она фиксируется на ползунке ручки, и в том случае, когда вода начинает терять тепло, открывается впускной клапан для горячего потока, после чего происходит подогрев.
  • Автоматика для котельного оборудования – данные устройства полезные, можно даже сказать, незаменимые для котлов. Благодаря им происходит контроль потребляемого топлива – человек пользуется системой отопления, при этом еще и экономит на ней. Принцип работы заключается в эксплуатации температурных датчиков, монтируемых на самом агрегате.
  • GSM управление отоплением – специальная автоматика, которая позволяет автоматически регулировать прогрев каждой комнаты. Примечательна тем, что способна монтироваться даже в удаленном месте. Благодаря этому, владелец частного дома может сидя на диване поддерживать нормальный микроклимат в гараже, мастерской и других комнатах.

Преимущества и недостатки видов

Каждый из вышеперечисленных «помощников» имеет свои сильные и слабые стороны, которые следует детально разобрать. Благодаря такому подходу, у вас есть возможность создать «умное» отопление дома.

Первые три вида можно объединить в одну группу, так как сильные и слабые стороны у них схожи. Начнем с преимуществ:

  • простые при монтаже;
  • доступные;
  • прочные;
  • малогабаритные.

К недостаткам можно отнести только отсутствие полной автоматизации.

Два последних вида с поддержкой GSM дают возможность пользователю регулировать старт и завершение работы, а также управлять элементами системы отопления не вставая с дивана при помощи пульта, поддержки мобильных устройств или панели инструментов. Главным недостатком является высокая цена.

Как автоматизировать систему отопления

Переделка системы отопления и ее автоматизация

Хотите узнать, как еще можно экономить на отоплении? Подписывайтесь на рассылку и получайте свежие материалы.

Автоматизация отопления и вентиляции

Каждый руководитель или экономный хозяин задумывается о том, чтобы автоматизировать работу инженерных систем, отвечающих за комфортные условия на объекте, его полноценную эксплуатацию. Такое решение дает много преимуществ. Автоматика держит под контролем все основные рабочие параметры, вовремя корректирует их при изменении внешних условий. За счет этого удается исключить перерасход ресурсов, свести к минимуму человеческий фактор, добиться максимальной производительности. Наибольшего внимания заслуживают отопительные системы, задача которых – обогрев объекта, а также вентиляция, обеспечивающая поступление необходимых объемов свежего воздуха, выводящая наружу лишнее тепло, влагу. Спроектировать автоматизированную схему их работы самому трудно, данной работой должны заниматься специалисты, что позволит исключить ошибку. Это важно, ведь даже минимальная оплошность может привести к тому, что система окажется неэффективной, может выйти из строя, спровоцировать расходы на восстановление. Мы – одна из лучших компаний в Москве, среди фирм, занимающихся проектированием и монтажом автоматики, нам можно доверить самую сложную задачу!

Эффективная вентиляция позволяет постоянно поддерживать на объекте комфортную среду. Основной показатель при проектировании – это кратность воздухообмена, то есть отношение воздушных объемов, поступающих внутрь помещения за конкретное время, к его объему. Этого принципа придерживаются все проектирующие предприятия Москвы, в том числе и наша фирма. Эта величина постоянно меняется. Например, если взять офис или производственный цех, то в разгар рабочего дня воздух должен обновляться интенсивно, нагрузка на вентиляцию максимальна. В ночное время разрешается снижение производительности для экономии электроэнергии. Автоматизация систем вентиляции, кроме обеспечения комфортного микроклимата внутри помещений, выполняет массу других важных задач:

  • Управление работой всех модулей системы, постоянное отслеживание текущих рабочих параметров, внесение корректировок, если они отклоняются от нормативных значений. Такой подход избавляет от пользовательского вмешательства, бережет от опасности влияния человека;

влияние сухого воздуха на сырьё, влажность, вентиляция

Автоматизированная схема дополняется ручным управлением, для чего устанавливается особый щит. Периодический контроль со стороны мастера повышает уровень безопасности. Ручное управление дает возможность устраивать тестовые запуски, выводить оборудование на полную мощность, ввиду чего исключаются непредвиденные выходы из строя.

Вентиляционная система дополняется отопительным оборудованием. Обогрев также создает на объекте оптимальный микроклимат, что обеспечивает комфорт персонала, увеличивает производительность. Отопительные установки препятствуют превышению нормативных уровней влажности, а скопления влаги негативно отражаются на сроке службы техники и отделочных материалов, провоцируют образование плесени. По статистике отопительное оборудование потребляет больше всего энергии, так что автоматизировать его – значит существенно сократить издержки предприятия, оптимизировать расходные статьи.

Автоматизация систем отопления разрабатывается в соответствии с требованиями конкретного объекта. При обогреве могут использоваться схемы, основанные на циркуляции воды, электрические конвекторы и другие, но каждая из них может быть автоматизирована. Датчики постоянно отслеживают температурные показатели, сравнивают их с нормативными значениями, корректируют текущую производительность. Это значительно экономит ресурсы, позволяет оперативно реагировать на изменение условий внешней среды. С учетом достаточно сложных климатических условий Москвы, такое решение выглядит очевидным, в особенности, если речь идет о крупной организации.

Система отопления скомбинирована множеством модулей. Датчики отслеживают температуру внутренней и внешней среды, отправляют данные на управляющий пульт, который обрабатывает их и посылает команды на приводы, изменяющие положение заслонок, определяющих объемы поступающего теплоносителя, корректирующие производительность электрических конвекторов. Грамотный подход к проектированию, следование актуальным нормативам, использование наиболее современных моделей устройств – все это обеспечивает эффективность, надежность и безотказность автоматики.

«Грей, дуй, охлаждай…», или логика управления климатом в умном доме

Умный дом

В последнее время тематика умного дома набирает все большую популярность, появляются все новые и новые статьи, отзывы, обсуждения, и практически на любой вопрос можно сходу найти несколько мнений и ответов. Но во всем этом мире информации по-прежнему остается одна белая область, а именно логика работы. Мы не побоялись и решили представить на суд общественности наши заготовки по этому вопросу.

Для начала пару слов об объекте, который предстоит оснастить системами автоматизации. Это небольшой многоквартирный дом, каждая квартира которого оснащается независимыми системами кондиционирования, вентиляции, отопления и теплого пола.

В качестве основных требований заказчик отметил: единый интерфейс для управления всеми системами умного дома, ограниченный бюджет и минимальное количество дополнительной проводки. После небольшого исследования рынка систем автоматизации мы остановились на решении от Fibaro, так как основные преимущества этого решения практически идеально повторяют наши условия.

В этой статье мы опишем процесс создания подобия HVAC системы для квартиры на базе протокола Z-Wave. Надеемся получить кучу замечаний от сообщества, чтобы довести наше решение до съедобного состояния. Если ожидаемый результат будет достигнут, то мы с удовольствием продолжим этот цикл другими публикациями, в которых будем делиться своим опытом использования Z-Wave устройств.

Итак, опишем исходные данные и условия функционирования нашей системы.

В первую очередь мы задались вопросом, что будет управлять всеми системами. В качестве головного устройства мы остановились на контроллере Home Center 2. Изначально планировалось создать сеть из пяти контроллеров и организовать систему таким образом, чтобы один контроллер управлял всеми квартирами на одном этаже здания. Но вскоре выяснилось, что таким образом построить систему не получится, так как у HC2 есть ограничение на количество подключенных z-wave устройств, а объединение контроллеров в одну сеть дает только расширение зоны действия z-wave сети, но не увеличивает предельно допустимое количество подключенных устройств. Одновременно к одному контроллеру можно подключить не больше 230 устройств. Соответственно, к пяти контроллерам, объединенным в единую сеть, по-прежнему можно подключить лишь 230 устройств. Поэтому нам пришлось увеличить количество контроллеров в проекте в два раза и отказаться от объединения их в единую сеть. Теперь один HC2 будет работать на 4-5 квартир, что дает нам возможность использовать от 46 до 57 z-wave устройств в каждой квартире.

После того, как мы определились с главным контроллером, встал вопрос, какие данные необходимо собирать, и как это делать. Для управления климатом необходимо знать текущее положение дел в квартире, а именно: температуру внутри и снаружи помещения, влажность, уровень CO2, положение окон и дверей, наличие жильцов дома. Поскольку бюджет проекта ограничен, мы отказались от мониторинга влажности и уровня CO2.

Для мониторинга температуры внутри помещения многие z-wave устройства содержат встроенные датчики температуры, дополняющие основной функционал устройства. И, конечно же, существуют датчики температуры в отдельном исполнении. Согласно нашему проекту, в каждой квартире будет примерно 35 устройств, которые так или иначе будут показывать значение температуры. Это три датчика протечки FIB_FGFS-101, три IR преобразователя REM_ZXT120, термостат RS 014G0160, датчики движения, и по три датчика температуры DS 18B20 на каждый контур теплого пола и контур системы отопления. Мониторинг температуры контура теплого пола необходим в первую очередь для того, чтобы не допустить перегрева паркета, т.к. максимально допустимая температура паркета не превышает 27 градусов.

Контроль температуры для защиты паркета от перегрева

Контроль температуры для защиты паркета от перегрева

Поскольку все эти значения температуры могут достаточно серьезно отличаться друг от друга, в зависимости от того, где устройство установлено – для определения температуры в помещении мы будем высчитывать среднее значение по всем показателям из данного помещения.

Для определения температуры снаружи помещения существуют два варианта. В HC2 есть функция получения прогноза погоды для города, который задается при первоначальной настройке контроллера. Однако такой метод определения температуры не отличается приемлемой точностью, поэтому мы для этих целей будем использовать несколько датчиков DS 18B20, установленных на внешнем фасаде здания. При этом следует учесть, что датчики нужно располагать не напрямую на фасаде и избегать попадания на них прямых солнечных лучей.

В любом умном доме одной из главных целей его создания является снижение затрат на обогрев и охлаждение помещений, поэтому очень важным становится понимание текущего положения окон и дверей. Для того чтобы отключать отопление и кондиционирование, если открыто окно или дверь, мы будем использовать обычные магнитно-контактные датчики, а для их интеграции в сеть z-wave они будут подключены к универсальным бинарным датчикам FIB_FGBS-001.

Подключение датчиков температуры DS18B20

Подключение датчиков температуры DS18B20

Для определения наличия жильцов дома мы создали виртуальное устройство, которое представляет собой кнопку. При нажатии на эту кнопку пользователь сообщает системе, что дома никого нет.

Виртуальное устройство - кнопки включения режимов дом/работа

Виртуальное устройство — кнопки включения режимов дом/работа

Когда в систему поступает сигнал, что дома никого нет, контроллер отключает все системы HVAC и переходит в режим энергосбережения до тех пор, пока пользователь не соберется домой. Находясь в режиме энергосбережения, система продолжает контролировать температуру, и не допустит переохлаждения помещений и снижения температуры ниже отметки в 18 градусов.

Еще один немаловажный элемент управления климатом в жилом помещении это уставка температуры. В нашем решении пользователи смогут изменять ее двумя способами. С помощью настенного термостата или при помощи специально созданного виртуального устройства используя смартфон или планшет.

Разобравшись с мониторингом текущего состояния микроклимата в квартире, мы перешли к изучению непосредственно тех устройств, которыми нам предстояло управлять.

Каждая квартира будет оборудована 3 кондиционерами производства Mitsubishi Еlectric. Управление ими планируется осуществлять при помощи IR преобразователей REM_ZXT120. Эти устройства имеют предустановленные настройки для управления наиболее распространенными моделями кондиционеров от ведущих производителей, а так возможность обучения IR командам с пульта дистанционного управления.

Помимо кондиционеров каждая квартира будет оснащена независимой системой приточно-вытяжной вентиляции, и управление ей будет организовано с использованием двухканальных реле FIB_FGS-222.

Также во всех квартирах будут установлены семь контуров теплого пола и один контур центрального отопления. Каждый контур оснащается трехпозиционным клапаном с сервоприводом. Управляется при помощи RGBW модуля FIB_FGRGB-101.

После подбора и изучения всего необходимого оборудования нашей следующей задачей стала разработка наиболее эффективного и самодостаточного алгоритма управления климатом.

Блок-схема с алгоритмом управления климатом в квартире

На блок-схеме приведен алгоритм, который представляет собой основную логику работы всей системы управления HVAC.

Получившийся алгоритм реализован в виде одного главного скрипта и нескольких вспомогательных. В НС2 эти скрипты называются сценами и пишутся на lua.
Для того чтобы не сильно загружать контроллер, сцены запускаются только при срабатывании так называемых триггеров.

Для основной сцены в качестве триггеров выступают следующие события:

  • один из показателей температуры изменится более чем на один градус
  • пользователь изменил уставку температуры
  • пользователь включил/выключил режим на работе
  • окно или дверь (на лоджию или входная) были открыты/закрыты

Как видно из кода основной сцены, в своей работе она использует глобальные переменные:

  • Workmode //режим на работе
  • TempSet //температура уставки
  • WinStatus //открыты ли окна и двери на лоджию (нужны для ограничения работы кондиционеров)
  • CHeating //включено ли центральное отопление

Так как для комфорта очень важно чтобы воздух в квартире был свежий, мы решили, что будет правильно сделать систему принудительного проветривания помещений через приточно-вытяжную вентиляцию. Если в течение последних трех часов вентиляция не работала, то автоматически запустится сценарий проветривания помещения длительностью 15 минут. Принудительное проветривание не осуществляется если включен режим «на работе».

Вот так мы планируем решать поставленную задачу. На повестке дня стоит еще много вопросов, предстоит решить много проблем и преодолеть множество трудностей. Это наша проба пера, просим вас отнестись с добротой и пониманием.

Автоматизация систем отопления и микроклимата

Пожалуй, каждый владелец частного дома сталкивается с проблемой устройства системы отопления. Есть надёжное современное решение — автоматика для отопления дома! Правда, многие не понимают значения заданной фразы. Поэтому в представленной статье речь будет идти именно о ней.Очевидно, установка рассчитана на упрощение жизнедеятельности человека! Благодаря ей гораздо удобнее контролировать отопление. Автоматика имеет ряд прочих достоинств, таких как автоматическое регулирование степени теплоты, а следовательно, меньшие затраты личного времени. Однако, не многие доверяют данному типу отопления, предпочитая регулировать его самостоятельно.

Под самим словом «автоматика» понимают комплекс приборов, регулирующих какой-либо процесс автоматически, то есть не вручную. Плюсом является практически абсолютная безошибочность агрегата, управление — более точное, а функционал представляет собой кладезь дополнений.

Какие существуют автоматические установки?

В настоящий момент рынок представляет потребителю широкий выбор регулирующих устройств. Поэтому необходимо знать, какая автоматика для систем отопления дома вообще существуют, чему отдать предпочтение.

Комнатный термостат

По критерию установки существуют:

  • Проводные термостаты. Достоинством данного вида считается возможность провести питание до приблизительно 50 метров посредством проводов.
  • Беспроводные термостаты. Преимуществом является необязательность создания отверстия под провода. Однако, они имеют существенный недостаток — железобетонные стены уменьшают мощность сигнала.

По функционалу различают:

  • Простые термостаты. Они удерживают нужный уровень теплоты.
  • Программируемые термостаты. Такие устройства способны устанавливать определённое количество градусов на целую неделю вперёд (срок зависит от модели) с максимальной точностью до секунд. К достоинствам также можно причислить экономию средств за счёт недельного программирования.

Также различают термостаты:

  • Электронные термостаты. Комплект содержит три компонента: датчик температуры, передатчик сигнала, реле. Главным плюсом устройства является максимальная точность оборудования. Не стоит забывать простоту использования.
  • Механические термостаты. Основа приборов состоит в способности изменять свойства под влиянием уровня температуры. Вследствие изменения температуры в газовой мембране, замыкается или размыкается цепь, заставляющая работать определённые механизмы.
  • Электромеханические термостаты. Механизм устройства гораздо проще электронного. Главным элементом является реле. Узел внешне похож на трубку, которая наполняется специальным веществом, реагирующим на температуру. Если котёл нагревается, то вещество расширяется, аналогично котёл остужается — вещество сокращается. А привод, зависящий от вещества, благодаря электроцепи регулирует температуру.

Подключение может осуществляться к :

Термоголовка

Это терморегулирующий элемент, который под влиянием внешней среды приоткрывает или закрывает радиатор. Недорогой вид автоматики для отопления дома. Значительным плюсом является то, что термоголовка очень удобна для локального нагрева, а также происходит значительная экономия средств. Из минусов: во-первых, регулировка происходит по меркам, состоящих из абстрактных чисел, а не градусов. Во-вторых, датчик измеряет градусный уровень тепла вокруг установки, но не помещения, что уменьшает точность устройства.

Погодозависимая автоматика

Конструкция погодозависимой автоматики для отопления дома несложна: снижается погода на улице-увеличивается температура теплоносителя. Однако, погодозависимая установка имеет весьма значительный недостаток — система порой не успевает адаптироваться под температуру, и, следовательно, эффект запаздывает. Особенно упомянутый минус проявляется, если подключено дополнение — полы с подогревом. К недостаткам относят то, что приборы действуют не совсем корректно, приблизительно, поэтому изменение заметно лишь при сезонной смене климата. Стоит отметить, цены на агрегат относительно высокие. Но агрегаты будут очень удобными в производстве, масштабных домах (свыше 500 квадратных метров).



Виды систем отопления

Системы отопления классифицируются по следующим признакам.

По виду теплообмена между обогревателем и окружающей средой:

Конвективное отопление. В этом случае передача тепловой энергии происходит вместе с перемещением объемов горячего и холодного воздуха: тёплый воздушный поток устремляется вверх, холодный – опускается вниз. Из механизма передачи тепла, конвективное отопление невозможно через любые непроницаемые преграды, в т.ч. прозрачные.

Лучистое отопление. Это вид отопления, при котором тепло передается излучением. От Солнца – к Земле или от нагретой поверхности к наблюдателю.

Конвективно-лучистое отопление. Смешанный механизм. Большинство отопительных приборов (радиаторы, конвекторы, теплые полы и стены) передают тепло именно этим способом, оптимальным считается вариант, когда имеет место примерно равное (50/50) соотношение конвективного и лучистого тепла.

По виду теплоносителя:

Водяное отопление. На сегодняшний день самый распространённый вид отопления, который бывает следующих видов:

  • Радиаторное отопление, при котором могут использоваться следующие типы радиаторов: чугунные, стальные, алюминиевые, биметаллические, каменные, керамические, а также конвекторы.
  • Тёплый водяной пол. В этом случае отопительные коммуникации проложены под покрытием пола.
  • Плинтусное отопление. В этом случае каждая секция теплого плинтуса представляет собой небольшой конвектор с кожухом, а монтаж ведётся, как монтаж обычного радиатора.
  • Водяное инфракрасное отопление («тёплый потолок»). При монтаже такой системы на потолке крепится большая инфракрасная панель, являющаяся источником тепла.
  • Комбинированные системы: включают в себя элементы вышеприведенных систем отопления.

Воздушное отопление. К воздушным относят системы, в которых теплоносителем выступает нагретый воздух. В приточной вентиляции такие системы бывают локальными и распределёнными.

В локальных системах нагревание и подача воздуха производится непосредственно в отапливаемом помещении при помощи отопительных и отопительно-вентиляционных приборов.

В распределённых системах воздух нагревается в воздухонагревательной установке и по каналам подается в помещения.

Кроме того, бывает огневоздушное отопление, при котором тепло поступает от печей и каминов. При таком виде отопления теплоноситель либо практически отсутствует, либо им являются горячие дымовые газы.

Системы отопления без теплоносителя.

  • Электрические системы отопления. В таких системах электрическая энергия, преобразовываясь в тепловую, нагревает помещение, а не теплоноситель, например, электро-камины, ИК-электрические панели, электрические радиаторы или полы.
  • Газовые системы. В таких системах тепло вырабатывается при сгорании газо-воздушной смеси. В качестве примера можно привести газовые камины. картинка галового подогрева

Автоматика для радиаторов

  • Использование термоголовки с клапаном; (Описано выше)
  • Климат-контроль;

Состоит из термоэлектрического привода, контроллера, датчика. Полностью автоматическая установка для отопления дома с возможностью удалённого управления. Климат-котроль — автоматическое управление по датчикам с множеством дополнений. К плюсам относят: во-первых, управление доступно централизованно, удалённо (с мобильных устройств), во-вторых, возможность подключения к системе умного дома, в-третьих, установку расписания режима.

Механизм устроен следующим образом: на каждом радиаторе устанавливается специальный привод, подсоединенный к контроллеру. К контроллеру подключаются датчики. При изменении температуры датчики реагируют, далее отправляют сигнал контроллеру, который регулирует клапан.

Автоматика для угольного котла

Возможности приборов достаточно широки. Зачастую комплекты отапливающих приборов включают в себя: компьютер, который обеспечивает управление прибором, вентилятор либо воздушная турбина.

Достоинством оборудования, оснащенного автоматикой для отопления частного дома, считается огромная экономия драгоценных минут, денег. Ведь инновационные котлы длительного горения могут сделать практически всю работу за вас — они способны работать без вмешательства человека довольно много времени — до приблизительно 48 часов! Владельцу дома необходимо всего лишь установить нужный градусный уровень, а приспособление будет осуществлять действия самостоятельно. К тому же можно установить таймер на температурный режим. То есть, например, если владелец жилья покинет его на какое-то количество времени, то будет поддерживаться минимальный температурный режим. К приезду жильца, сработает таймер, жилье начнет снова прогреваться до нужной температуры — без участия человека! Так, по приезду жилье будет комфортным, прогретым.

Важно отметить, котлы с автоматикой стали настолько развитыми, что способны самостоятельно проводить диагностику — проверку безопасности, являющейся весьма существенным плюс.

Котлы с автоматической подачей

На сегодняшний день считаются наиболее эффективной установкой —ведь коэффициент полезного действия достигает отметки 80-85%! Такой агрегат точно обеспечит домашний уют. Топливо засыпается в бункер, оттуда подаётся автоматически в камеру сгорания. Также существует дополнение, позволяющее очищать зольник автоматически — без человеческого вмешательства. Процесс установки котлов — весьма кропотливый труд, поэтому экономить не стоит в целях вашей пользы.

Снижение затрат на оплату тепловой энергии

Автоматизация ИТП является одним из наиболее эффективных инструментов для снижения затрат на оплату тепловой энергии.

4.1.Автоматика ИТП обеспечивает регулирование температуры воды, поступающей в систему отопления, в зависимости от температуры наружного воздуха. Это позволяет уменьшить «перетоп» здания в осенне-весенний период и снизить тем самым «бесполезные» затраты тепловой энергии. 4.2. Дополнительным резервом экономии тепловой энергии является корректировка температуры подаваемого в систему отопления теплоносителя по температуре обратной воды с учетом реального режима работы теплоснабжающей организации. 4.3. Поддержание температуры воды в обратном трубопроводе в соответствии с температурой теплоносителя в подающем трубопроводе тепловой сети (см. п.3.3) позволяет избежать претензий и штрафных санкций теплоснабжающей организации. Например, ТЭЦ-5 в случае систематического превышения среднесуточной температуры «обратки» на величину более 3°С начисляет дополнительную оплату за «недоиспользованную тепловую энергию». Эта величина определяется по формуле:

∆Wнедоис.– Величина «недоиспользованной тепловой энергии» за расчетный ежемесячный период, Гкал.

М2 – количество теплоносителя на систему отопления; вентиляции за расчетный ежемесчяный период, Т;

Т2Ф – фактическая температура обратной воды, °С;

Т2ГР– температура обратной воды, соответствующая температуре в подающем трубопроводе сетевой воды, °С;

1000 –коэффициент для перевода в Гкал.

Практика показывает, что величина ∆Wнедоис. достигает 50% от суммарного теплопотребления за 1 месяц.

4.4. Современные контролеры позволяют использовать уставку (поправку) к задаваемой температуре воды, поступающей в систему отопления. Эта установка позволяет автоматически понижать температуры в производственных помещениях в ночное время суток и в выходные дни, затем превышать ее в рабочее время. В жилых домах используют автоматическое снижение температуры в ночное время. Таким образом, автоматизация теплопотребления обеспечивает существенную экономию тепловой энергии, которая достигает 50%.

Автоматика для насоса

Регулирует деятельность системы, контролируя множество функций, таких как, например, давление, распределение воды.

Для нормальной работы необходимы следующие компоненты: коллектор, обеспечивающий подачу воды, реле, контролирующее насос, манометр, осуществляющий измерение давления, датчик сухого хода, который предотвращает перегрев устройства, если вода иссякнет.

Всю автоматику, отвечающую за насос, подразделяют на несколько моделей, исходя из времени создания:

Автоматика первого поколения;

Первая простейшая конструкция подачи воды. Используется для решения несложных задач, если необходимо обеспечить помещение источником воды. Она состоит из трех компонентов: датчик сухого хода, гидроаккумулятор, выполняющего задачу накопления воды, содержащего в себе мембрану, реле, контролирующее давление воды. Обычно не вызывает трудностей при установке, так как в системе полностью отсутствуют сложные электрические схемы. Механизм также чрезвычайно лёгок: порядок цикличен—при полном заполнении воды, насос отключается, далее цикл идёт на повтор.

Автоматика второго поколения

Образец отличается от предыдущего тем, что к управлению добавились датчики, осуществляющие контроль за работой. Вследствие, гидроаккумулятор необязателен, так как его функцию выполняют датчики. Большим спросом автоматика второго поколения не пользуется, так как схожа с первой, однако по цене обходится гораздо дороже.

Автоматика третьего поколения

Является более достойной версией предшественников, стоит дороже соответственно. Агрегат выделяется наибольшей надёжностью, эффективностью, улучшена программа безопасности, а главное — максимальная точность устройства.

Для поддержания прибора в автоматическом режиме устанавливается реле. Механизм несложен: при уменьшении давления воды реле запускает систему, аналогично при увеличении давления — остановит.

Термостат для включения или отключения насоса

Самый частый вид автоматики для насоса в отоплении дома. Механизм: сначала происходит сбор информации с датчика, далее происходит сравнивание показателей, от этого зависит работа насоса. Например, если владелец задает режим +60, а гистерезис +5, то вода должна составлять +65, чтобы система запустилась, а чтобы она остановилась необходима температура соответственно +55.

Ссылка на основную публикацию