Выбираем водяной калорифер для приточной вентиляции: расчет мощности и установка

Подбор калорифера методом математического расчёта

Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Подбор мощности невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.

Определение

Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные – энергия передаётся через трубы с горячей водой, паром.
  2. Электрические – тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Более подробная информация об устройстве и нормативных данных СНиП и ГОСТ представлена в статье «Описание калориферов и узлов обвязки приточной вентиляции».

Электрический калорифер

Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата – инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Водяной калорифер

Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода – снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит узел обвязки: (обеспечивает подвод теплоносителя к обменщику), насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Расчёт мощности

Процесс нагрева воздуха в виде графика

Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:

  • Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м 3 /ч.
  • Температуры приточки. Берётся минимальное значение для зимнего периода.
  • Требуемой по нормам или индивидуальным пожеланиям заказчика температуре воздуха на выходе.
  • Максимальной температуре, до которой может нагреться тепловой носитель.

Правила вычислений

Теплотехнический расчёт канального нагревателя начинается с определения двух параметров: первый – площадь поперечного сечения тепловой установки; второй – мощность, необходимая для нагрева поверхности заданного размера.

Площадь вычисляется по формуле:

Aф = Lp / 3600×(ϑρ), где

L – максимальное значение приточки для поддержки параметров вытяжки, м 3 /ч;
Р – нормативная плотность воздуха, кг/м 3 ;
Θρ – скорость движения воздуха на каждом участке, определяемая из аэродинамического расчета.

Полученное значение подставляется в таблицу, где указаны возможные варианты сечения калориферов, значения округляется в большую сторону.

Таблица подбора по площади сечения

Если результаты вычислений выходят за рамки табличных значений, то проектировщики идут по другому пути: закладывается несколько параллельных канальных нагревателей, суммарная площадь сечений которых равна расчётному значению.

Формула скорости воздушных масс, необходимая для подбора площади нагревательного элемента, следующая:

ϑρ = Lρ / 3600×Аф.факт

На следующем этапе определяется объем тепловой энергии, необходимый для прогрева приточки:

Q = 0.278×Gc× (tп – tн), где

Q – объём тепловой энергии, Вт;
G – расчётный показатель расхода воздуха, кг/ч;
с – удельная теплоёмкость, в данном случае берётся 1.005 кДж/кг °С;
tп – температура приточки, °С;
tн – температура воздуха на входе.

Расход воздуха G = Lρн. Это связанно с местом установки вентилятора. Он находится до калорифера, а, следовательно, используется нормативное значение плотности воздушных масс снаружи помещения.

Далее вычисляются затраты горячей воды на отдачу тепла холодному:

Gw = Q / cw×(tг – t0), где

cw – тепловая ёмкость воды, кДж/кг °С;
tг – температура теплоносителя (воды), 0 С;
t0 – расчётная температура воды в обратном трубопроводе, 0 С.

Теплоемкость жидкости можно узнать из справочной литературы. Параметры теплового носителя зависят от параметров среды.

Зная Gw, можно вычислить скорость движения воды по трубам:

w = Gw / 3600×ρw×Aф, где

Aф – размер сечения теплообменника, м²;
ρw – плотность воды при средней температуре теплового носителя, 0 С.

Рассчитать скорость движения теплоносителя можно по формуле, указанной выше. Она справедлива для простой системы последовательного подключения нагревательных элементов. В случае использования параллельной схемы, толщина трубопровода увеличится в два или более раз, а средняя скорость движения уменьшится.

Кроме подбора калорифера выполняется расчёт тепловых потерь по укрупнённым показателям. Основная формула:

q – тепловая характеристика объекта, Вт/(м 3 ּ о С);
V – объём объекта по внешней стороне ограждающих конструкций, м 3 ;
(tп-tн) – разность температуры основных помещений, о С.

Расчёт поверхности нагрева

Основная формула площади нагревательной поверхности канального устройства:

Amp = 1.2Q / K× (tср.т – tср.в), где

К – коэффициент передачи тепла от калорифера холодному воздуху, Вт/(м°С);
tср.т – средний показатель температуры теплового носителя, 0 С;
tср.в – средний показатель температуры приточки, 0 С;
число 1,2 – коэффициент запас. Вводится в связи с остыванием воздуховодов.

Иногда одного калорифера недостаточно или площадь сечения слишком большая. Тогда в расчёт берётся несколько однотипных устройств.

На последнем этапе определяется, сколько тепла может выдать канальный нагреватель:

Qфакт = К× (tср.т – tср.в)×Nфакт×Ak

Особенность методики для паровых нагревателей

Принцип вычислений не меняется. Отличие только в способе определения расхода теплового носителя для нагрева холодного воздуха:

r – тепловая энергия, получаемая в процессе конденсации пара.

Обвязка

Калорифер в системе вентилирования обвязывается двумя способами:

  1. Двухходовыми вентилями.
  2. Трёхходовыми вентилями.

Подбор электрического калорифера

Для установки электрокалорифера не требуется специальный расчёт расхода тепла на работу вентиляции, но необходимо знать два параметра:

  1. Расход воздуха.
  2. Температуру на выходе из системы прогрева.

Производители указывают их в техническом паспорте на устройство.

Но здесь важна одна деталь: объём приточного воздуха всегда должен быть на уровне, указанном производителем устройства. Несоблюдения правила эксплуатации приведёт к поломке прибора.

Система рекуперации

Прямой нагрев воздуха за счёт только энергии нагревательных элементов – это не самый экономичный и практичный вариант устройства отопления вентсистемы. Система рекуперации за счёт замкнутого цикла работы значительно снижает теплопотери. Её работа основана на теплоизбытках, а точнее – энергии отработанных воздушных масс.

Общая схема устройства выглядит так: приточка и вытяжка проходят через один блок, и тепловыделения от исходящих воздушных потоков частично передаются входящим. За счёт использования теплопритоков снижается нагрузка на остальные системы отопления.

Монтаж системы отопления с рекуперацией стоит дороже, чем аналогичный, но без неё. Затраты быстро окупаются в регионах, где отопление подвергается значительной тепловой нагрузке ввиду продолжительной зимы.

Подведем итоги

За помощью в подборе и расчёте канального нагревателя лучше обратиться в специализированную организацию.

Пример

Компания «Мега.ру» оказываете комплексные услуги в сфере проектирования вентиляции и других инженерных систем. Грамотные инженеры ответят на любые вопросы по телефонам, указанным на странице «Контакты». Компания работает в Москве и соседних регионах, так же практикуется удалённое выполнение заказов на всей территории РФ.

Расчет калорифера: онлайн-калькулятор расчета мощности и расхода теплоносителя

Расчет калорифера

Онлайн калькуляторы

При конструировании системы воздушного отопления используются уже готовые калориферные установки.

Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.

Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.

С помощью него вы сможете рассчитать:

  1. Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
  2. Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
  3. Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.

Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.

Расчет производительности для нагрева воздуха определенного объема

Объем помещения для нагрева

Определяем массовый расход нагреваемого воздуха

G (кг/ч) = L х р

L — объемное количество нагреваемого воздуха, м.куб/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

Q (Вт) = G х c х (t кон — t нач)

G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

f (м.кв) = G / v

G — массовый расход воздуха, кг/час
v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

Вычисление значений массовой скорости

Находим действительную массовую скорость для калориферной установки

V(кг/м.кв•с) = G / f

G — массовый расход воздуха, кг/час
f — площадь действительного фронтального сечения, берущегося в расчет, м.кв

Не справляетесь самостоятельно с расчетами? Отправьте нам существующие параметры вашего помещения и требования к калориферу. Мы поможем вам с расчетом. Либо посмотрите существующие вопросы от пользователей по данной теме.

Расчет расхода теплоносителя в калориферной установке

Рассчитываем расход теплоносителя

Gw (кг/сек) = Q / ((cw х (t вх — t вых))

Q — расход тепла для нагрева воздуха, Вт
cw — удельная теплоемкость воды Дж/(кг•K)
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С

Подсчет скорости движения воды в трубах калорифера

W (м/сек) = Gw / (pw х fw)

Gw — расход теплоносителя, кг/сек
pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб
fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв

Определение коэффициента теплопередачи

Коэффициент теплотехнической эффективности рассчитывается по формуле

Квт/(м.куб х С) = А х V n х W m

V – действительная массовая скорость кг/м.кв х с
W – скорость движения воды в трубах м/сек
A

Расчет тепловой производительности калориферной установки

Подсчет фактической тепловой мощности:

q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))

или, если подсчитан температурный напор, то:

q (Вт) = K х F х средний температурный напор

K — коэффициент теплоотдачи, Вт/(м.кв•°C)
F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.кв
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Определение запаса устройства по тепловой мощности

Определяем запас тепловой производительности:

((qQ) / Q) х 100

q — фактическая тепловая мощность подобранных калориферов, Вт
Q — расчетная тепловая мощность, Вт

Расчет аэродинамического сопротивления

Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:

ΔРа (Па)=В х V r

v — действительная массовая скорость воздуха, кг/м.кв•с
B, r — значение модуля и степеней из таблицы

Определение гидравлического сопротивления теплоносителя

Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:

ΔPw(кПа)= С х W 2

С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице)
W — скорость движения воды в трубках воздухонагревателя, м/сек.

Водяной калорифер для приточной вентиляции: типы, модели и способы расчета мощности

Водяной калорифер

При устройстве приточно-вытяжной вентиляции помещение снабжается качественным свежим воздухом, что положительно сказывается на здоровье людей.

Но вместе с тем возникает проблема – в зимний период вентиляционная система пропускает с улицы морозный воздух, который нужно как-то подогревать.

Нагревательные элементы могут работать на электричестве, но это довольно дорогое удовольствие. Рассмотрим более экономичный вариант – калорифер водяной для приточной вентиляции.

Типы калориферов

Калорифер устанавливается непосредственно внутри вентиляционного канала, поэтому он должен соответствовать размеру и форме шахты. В зависимости от того, какой в нагревателе используется теплоноситель, различают три вида калориферов:

  1. Водяные.
  2. Паровые.
  3. Электрические.

Водяные

Калориферы промышленного типа

Чаще всего встречаются нагреватели прямоугольного сечения, но можно подобрать и круглую модель.

Прибор состоит из рядов трубок, съёмных боковых панелей и крышек.

По системе трубок циркулирует вода, но это может быть и этиленгликоль.

Через боковые отверстия, размер которых обязательно нужно уточнять при покупке, агрегат подсоединяется к системе отопления здания.

Определённые требования есть для воздуха, который проходит сквозь нагреватель:

  • Он не должен включать твёрдых частиц, волокна или липкие вещества.
  • Запылённость – менее 0,5 мг/м 3 .
  • Минимальная температура на входе -20°С.

Подбирать прибор нужно также по производительности (в м 3 /ч). Если этот показатель будет недостаточным, калорифер не будет прогревать воздух и в комнатах будет холодно.

Если по каким-то причинам нельзя установить обогреватель требуемой мощности, можно последовательно смонтировать ряд нескольких приборов меньшей мощности.

Паровые

Применяются главным образом в промышленных учреждениях, где пар является побочным продуктом производственного процесса. На паровых калориферах указывается, какое предельно допустимое давление они выдерживают. Обычно это от 0,5 до 1,2 Па.

Конструкция водяных и паровых калориферов

Биметаллический калорифер

Один и тот же нагреватель может использоваться и для пара и для воды.

Существует три разновидности приборов:

  1. Гладкотрубные.
  2. Пластинчатые.
  3. Биметаллические.
  • Гладкотрубные состоят из множества тонких полых трубок, близко расположенных друг к другу. Минус: теплоотдача модели не велика.
  • Пластинчатые. Здесь трубки имеют оребрение, что повышает площадь теплоотдачи. Более эффективны, чем первые.
  • Биметаллические имеют медные патрубки и коллекторы, а оребрение выполнено из алюминия. Наиболее эффективны.

Проверка систем вентиляции

В плохо проветриваемых помещениях система приточной вентиляции — единственное решение для создания здорового микроклимата. Периодически требуется обслуживание приточной вентиляции, его выполняют, как правило, профессионалы. Что входит в проверку, читайте далее.

Инструкцию по сборке и монтажу ветрогенератора вы найдете тут.

Для того чтобы увлажнить воздух, можно поставить в помещении емкость с водой, но это неэффективное решение, особенно если у вас есть ребенок. Здесь https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/uvlazhnitel-vozduxa-dlya-detej-kakoj-luchshe.html вы узнаете, как правильно выбрать увлажнитель воздуха для детей.

Электрические

Подойдёт для небольшой вентиляционной системы – интегрировать такой агрегат в вентиляционную систему гораздо проще, чем водяной. Если же затраты на электроэнергию будут слишком большие, есть вариант установить электрический нагреватель в паре с рекуператором.

Представляет собой спиральный тэн в корпусе. Для защиты от перегрева есть встроенный термостат.

Расчет мощности калорифера

Расчет вентиляционных систем

Определимся с исходными данными, которые понадобятся, чтобы правильно подобрать мощность нагревателя для вентиляции:

  1. Объём воздуха, который будет перегоняться за час (м 3 /ч), т.е. производительность всей системы – L.
  2. Температура за окном. – tул.
  3. Температура, до которой нужно довести нагрев воздуха – tкон.
  4. Табличные данные (плотность воздуха определённой температуры, теплоёмкость воздуха определённой температуры).

Инструкция для расчета с примером

Шаг 1. Расход воздуха по массе (G в кг/ч).

Формула: G = LxP

  • L – расход воздуха по объёму (м 3 /ч)
  • P – плотность воздуха по среднему.

Пример: С улицы поступает воздух -5° С, а на выходе нужна t +21°С.

Сумма температур (-5) + 21 = 16

Среднее значение 16:2 = 8.

По таблице определяется плотность этого воздуха: P = 1,26.

Плотность воздуха в зависимости от температуры кг/м3

Если производительность вентиляции 1500 м 3 /ч, то расчёты будут следующие:

G = 1500 х 1,26 = 1890 кг/ч.

Шаг 2. Расход теплоты (Q в Вт).

Формула: Q = GxС x (tкон – tул)

  • G – расход воздуха по массе;
  • С – удельная теплоёмкость входящего с улицы воздуха (табличный показатель);
  • tкон – температура до которой нужно прогреть поток;
  • tул – температура входящего с улицы потока.

Пример:

По таблице определяем С для воздуха, температурой -5° С. Это 1006.

Теплоемкость воздуха в зависимости от температуры, Дж/(кг*К)

Подставляем данные в формулу:

Q = (1890/3600*) х 1006 х (21 – (-5)) = 13731,9** Вт

*3600 – это час, переведённый в секунды.

**Получившиеся данные округляются в большую сторону.

Результат: для нагрева воздуха от -5 до 21 °С в системе производительностью 1500м 3 , требуется калорифер мощностью 14 кВт

Существуют онлайн калькуляторы, где введя производительность и температуры можно получить примерный показатель мощности.

Лучше предусмотреть запас мощности (на 5-15 %), поскольку производительность оборудования со временем часто снижается.

Вычисление поверхности нагрева

Чтобы рассчитать площадь нагреваемой поверхности (м 2 ) вентиляционного калорифера, используют следующую формулу:

Калорифер для вентиляции

Где:

  • 1,2 – коэффициент остывания;
  • Q – расход теплоты, который мы уже вычислили ранее;
  • k – коэффициент теплоотдачи;
  • tжид. – средний показатель температуры теплоносителя в трубах;
  • tвозд – средняя температура потока, поступающего с улицы.

K (теплоотдача) – это табличный показатель.

Средние температуры вычисляются путём нахождения суммы поступающей и желаемой температуры, которую нужно разделить на 2.

Получившийся результат округляется в большую сторону.

Знание площади поверхности нагревателя для вентиляции может понадобиться при подборе нужного оборудования, а также для закупки нужного количества материалов при самостоятельном изготовлении элементов системы.

Особенности расчета паровых калориферов

Как уже говорилось, калориферы используются одинаковые для водяного отопления и для применения пара. Расчёты осуществляются по тем же формулам, только расход теплоносителя вычисляется по формуле:

G = Q: m

  • Q – расход теплоты;
  • m– показатель теплоты, выделяемой при конденсации пара.

А скорость движения пара по трубам не берётся в расчёт.

Методы обвязки

Обвязка вентиляционного обогревателя – это соединение воедино множества приборов и элементов, которые отвечают за подводку теплоносителя, регулирование температуры и т. д. В неё включается циркуляционный насос, термодатчик, фильтр, байпас, шаровые краны и клапан.

Обвязка вентиляционного обогревателя

Принципиальная схема обвязки приточной вентиляции с водяным калорифером

Выбор клапана (трёхходовой или двухходовой) зависит от того, в каком помещении делается система вентиляции.

  • Двухходовой клапан поддерживает температуру, но никак не регулирует расход теплоносителя. Его устанавливают в помещениях, имеющих центральное отопление.
  • Трёхходовой клапан нужен там, где расход теплоносителя – вопрос лишних расходов (частных котельных, системах с бойлерами).

Как выбрать электрический калорифер

Электрическая модель вентиляционного обогревателя

Электрические модели рассчитываются по трём показателям:

  • производительность системы;
  • температура за окном;
  • желаемая температура.

Чаще всего выбрать электрокалорифер не сложно, поскольку производители указывают в документации производительность и мощность.

Запас мощности нужно брать около 10 %. И важно учесть, что должен поддерживаться минимальный объём воздуха, разрешённый производителем.

Цена и обзор моделей

Широко распространены водяные калориферы для приточной вентиляции ВНВ или КСк, продукты группы компаний «Евромаш». Агрегаты соответствуют требованиям качества. Имеют широкую линейку моделей, чтобы покупатель мог подобрать оборудование для вентиляционной системы любой сложности и протяжённости. Ценовая политика отечественной компании сравнительно щадящая:

  • КСк 3-6 (2500 м 3 /ч) Сталь – 5,5 тыс. руб. Нержавейка – 15 тыс. руб.
  • КСк 3-11 (16000 м 3 /ч) Сталь – 20 тыс. руб. Нержавейка – 48 тыс. руб.
  • КСк 4-8 (4000 м 3 /ч) Сталь – 8 тыс. руб. Нержавейка – 21 тыс. руб.
  • Galletti AREO 12 (мощность — 5,9-6,7 кВт, производительность до 790 м 3 /ч, охлаждение мощностью 3 кВт). Цена ок. 53 тыс. руб.
  • KROLL LH 130 (мощность – 20 кВт, производительность 1450 м 3 /ч). Цена ок. 60-77 тыс. руб.
  • КСк 4-1 – 7-9 тыс. руб.
  • FlowairLEOINOX 25S (мощность 10-25 кВт, производительность 900-4400 м 3 /ч). Цена 64 тыс. руб.

Заключение

Водяной калорифер в системе вентиляции – экономически выгоден, особенно в системе с центральным отоплением. Кроме функций воздушного обогрева он может выполнять функции кондиционера в летний период. Нужно только правильно подобрать прибор по мощности и площади поверхности, а также грамотно осуществить подключение и обвязку.

Прибор для ионизации воздуха

Знаете ли вы, что в атмосфере, где находится человек, обязательно должны присутствовать аэроионы? В квартирах, как правило, ионов не хватает. Однако некоторые люди считают, что искусственно обогащать ими воздух вредно. Ионизатор воздуха: вред или польза? Ответ на этот вопрос вы найдете на нашем сайте.

Инструкцию по сборке самодельного парогенератора читайте в этом материале.

Видео на тему

Какой калорифер для приточной вентиляции выбрать?

Вентиляция

Глоток свежего воздуха нужен и усердному работнику, и праздному домоседу. Впрочем, в зимнее время приточный воздух может быть чрезмерно свежим. Однако этот недостаток устраняет простейший нагревательный прибор — калорифер для приточной вентиляции, возвращающий комфортную температуру потоку свежего воздуха.

Вентиляция

Приточная вентиляция загородного дома

Разновидности вентиляционных калориферов

В системах воздухообмена используют две разновидности калориферов, а именно:

  • Нагревательные приборы на электричестве.
  • Нагревательные приборы на жидких теплоносителях.

Электрический калорифер для приточной вентиляции – это очень эффективный, но чрезмерно энергозатратный отопительный прибор. Ведь повышение температуры приточного потока в данном случае происходит за счет контакта воздуха с раскаленными пластинами из тугоплавкого металла. Причем повышение температуры пластины происходит за счет электрического сопротивления нагревательных элементов, поглощающих десятки киловатт энергии. Впрочем, низкая энергоэфективность не умаляет других достоинств электрических калориферов – легкости процесса монтажа и компактности конструкции прибора.

Нагреватели второго типа – водяные или паровые калориферы — повышают температуру приточного потока за счет передачи энергии теплоносителя, циркулирующего внутри радиатора этого прибора. Любой жидкостный калорифер — водяной для приточной вентиляции или паровой для системы воздушного отопления – является эталоном воздухонагревателя. Ведь жидкостный нагреватель воздуха не уступает по эффективность электрическому аналогу, одновременно демонстрируя и минимальное, по сравнению с электрическим калорифером, энергопотребление. Единственным недостатком подобного нагревательного прибора является относительно сложный монтаж.

Впрочем, эффективность любого калорифера зависит не только от технологии разогрева потока, но и от точных расчетов эксплуатационных характеристик нагревателей воздуха. Ведь ошибки в расчетах приведут к вызванному перегревом замыканию в электрическом калорифере или обмерзанию недостаточно теплого радиатора в жидкостном воздухонагревателе.

Расчёт калорифера вентиляции

Типовой расчет калорифера оперирует следующими параметрами:

  • Тепловой мощностью нагревательного прибора – чем она больше, тем лучше. Однако с ростом мощности увеличивается и расход энергии, а, следовательно, и цена эксплуатации калорифера. Поэтому мощность не может быть бесконечно большой – для экономии средств владельца вентиляции она должна быть всего лишь достаточной для обогрева нужной порции воздуха.
  • Площадью нагревательного элемента – тут повторяется ситуация с мощностью. Вроде бы, чем больше площадь, тем лучше. Однако очень большой нагревательный элемент просто не поместится в воздуховоде и «съест» намного больше энергии, чем требуется. Поэтому площадь нагревателя должна соответствовать решаемой задаче – нагреву порции воздуха конкретного объема.
  • Объемным или массовым расходом приточного потока – это та самая порция воздуха, подаваемая на радиатор калорифера в единицу времени. Расход измеряется в кубических метрах или килограммах в час, минуту или секунду. Причем тут все однозначно – чем больше расход, тем дороже эксплуатация калорифера.
  • Температурой воздуха на входе и выходе из калорифера. Цена эксплуатации зависит от разницы температур. Ведь значительная разница температур вынуждает потреблять больше энергии, направленной на генерацию тепловой мощности калорифера.

Упомянутые выше параметры увязаны между собой следующим образом:

Расчёт мощности калорифера вентиляции (Q) происходит в процессе перемножения разницы температур (T1-T2) и массового расхода (G). Причем помимо этих множителей на результат произведения влияет целый ряд дополнительных коэффициентов. Поэтому финальная формула выглядит следующим образом

Q=0,278xCxGx(T1-T2),

где с – это теплоемкость атмосферного воздуха (в большинстве случаев она равна 1.005 кДж/кг °С). Причем T1 – это температура воздуха на выходе из калорифера, а T2 – это температура приточного потока на входе в нагревательный прибор.

Массовый расход (G) зависит от производительности приточного вентилятора (L) и плотности воздуха (P). Расчетная формула выглядит следующим образом –

G = LxP

То есть, чем больше кубических метров в час прокачает вентилятор, тем больше будет и массовый расход и тепловая мощность калорифера. Причем производительность вентилятора определяется потребностью насытить каждый квадратный метр площади обслуживаемого помещения 3 кубическими метрами воздуха в час.

Расчет

Проводим расчеты

Площадь сечения нагревательного элемента (A) определяется как результат деления производительности вентилятора (L) и плотности воздуха (P) на скорость приточного потока в трубе (V). Расчетная формула выглядит следующим образом

A = LхP/3600хV

В свою очередь скорость зависит от производительности вентилятора и площади сечения воздуховода. Площадь нагревательных пластин в радиаторе или ТЭНе вычисляется по другой формуле

Ap=Qx1,2/Kx(Tt-Tv),

  • где К – это КПД калорифера, зависящее от типа нагревательного прибора,
  • Tt — это температура теплоносителя или пластины, а
  • Tv -это температура воздуха.

Оперируя данными параметрами, мы можем, во-первых, подобрать тип калорифера, во-вторых, оптимизировать тепловую мощность нагревательного прибора, и, в-третьих, уменьшить цену эксплуатации воздухонагревателя. Однако даже самые верные расчеты не помогут добиться оптимизации эксплуатационных характеристик калорифера в том случае, если этот нагревательный прибор будет инсталлирован в систему с грубыми нарушениями технологического процесса.

Монтаж калорифера в вентиляционную систему

Установка калорифера в приточную ветвь вентиляции предполагает подключение нагревательного прибора не только к воздуховоду, но и к источнику энергии – электропроводке или разводке системы отопления.

Причем в первом случае ошибку в монтаже можно допустить лишь намеренно. Ведь калорифер «включается» в сеть точно так же, как и любой другой электроприбор.

Узел обвязки

Узел обвязки калорифера

Однако в этом деле есть свои нюансы:

  • Во-первых, электрический калорифер необходимо оборудовать автоматом, защищающим сеть от возможного короткого замыкания или «пробоя» на линии подачи энергии к пластинам.
  • Во-вторых, калорифер придется защищать от перегрева, используя датчики контроля температуры, отключающие питание при разогреве пластины выше граничной температуры.
  • В-третьих, калорифер нуждается в заземлении, нивелирующем угрозу безопасности жильцов или персонала помещения, обслуживаемого приточной вентиляцией с подогревом.

Монтаж нагревательных приборов на жидких теплоносителях – это более сложная операция. Основные затруднения в этом случае вызывает обвязка калорифера для приточной вентиляции. А точнее качество данной операции.

Причем калорифер можно «увязать» с разводкой двумя способами:

  • С помощью двухходового вентиля – простого решения, которое не дает возможности контролировать обратный расход теплоносителя.
  • С помощью трехходового вентиля – более сложного узла, позволяющего совмещать калорифер, бойлер и котел.

При этом качество проделанной работы зависит не только от сложности узла распределения теплоносителя, но и от навыков специалиста, подключающего калорифер в систему. Ведь даже один негерметичный стык может спровоцировать падение тепловой мощности и дальнейшее обледенение радиатора. Поэтому монтаж водяных калориферов доверяют только опытным профессионалам, причем даже их работу принято контролировать самым тщательным образом.

Водяной электрический калорифер для приточной вентиляции и его схема

Для создания комфортного микроклимата в жилых и производственных помещениях воздушные массы, подающиеся по системе вентиляции, дополнительно нагревают или охлаждают. С целью подогрева используют калорифер водяной для приточной вентиляции. Подобные экономичные и недорогие устройства производят в нескольких разновидностях. Перед установкой агрегата нужно изучить его преимущества и недостатки, а также провести обзор популярных моделей. Обеспечить длительную и бесперебойную работу можно только благодаря правильной эксплуатации.

Принцип работы водяного калорифера

принцип работы водяного калорифера

Приспособления для системы вентиляции, которые работают с использованием воды, устанавливают только в случае наличия отрегулированной и налаженной работы системы теплообеспечения или ГВС. Агрегат может подогревать воздушные массы до температуры +70…+100°С. Нагретый воздух используют в качестве источника дополнительного тепла на больших площадях – спортзалах, складах, супермаркетах, павильонах, производственных помещениях и теплицах.

Принцип работы приточной вентиляции с водяным калорифером похож на работу аналогичного бытового прибора для обогрева помещения, только вместо электрической спирали в качестве теплообменника выступает змеевик из металлических трубок, в которых циркулирует теплоноситель.

При этом сам процесс подогрева воздушных масс выглядит следующим образом:

  • горячая жидкость из отопительной системы или сетей ГВС, подогретая до 80-180 градусов, идет в трубчатый теплообменник, который изготовлен из меди, стали, биметалла или алюминия;
  • теплоноситель нагревает трубки, а они в свою очередь отдают тепловую энергию воздушным массам, проходящим через теплообменник;
  • для равномерного распределения нагретого воздуха по помещению в приборе стоит вентилятор (он же отвечает за обратную подачу воздушных масс в калорифер).

Если все уже надоело и не знаете во что, еще поиграть, то можно попробовать скачать игровые автоматы 1xBet и насладиться новыми впечатлениями с популярной БК.

Благодаря использованию уже нагретого воздуха из отопительной системы агрегат экономит средства. Водяной нагреватель для вентиляционных сетей можно назвать прибором, который объединяет в себе качества конвектора, вентилятора и теплообменника.

На заметку! При устройстве правильной обвязки вентиляционный калорифер подойдет для дополнительного обогрева коттеджа с организованной вентиляцией.

Нагреватели для вентиляционных сетей работают только с воздухом, степень запыленности которого не превышает 0,5 мг/м³, а минимальная температура не ниже -20°С. Прибор монтируют внутри вентиляционной шахты и подбирают по ее параметрам (сечение и форма). Иногда для достижения нужной температуры воздуха последовательно устанавливают несколько менее мощных устройств, если одну конструкцию подходящей производительности не получится встроить в воздуховод.

Преимущества и недостатки

 монтаж водяного теплообменника

Целесообразно использование водяных нагревателей на производственных предприятиях, имеющих собственные коммуникации теплоснабжения. В этом случае агрегат будет максимально рентабельным.

К преимуществам устройств для подогрева воздуха причисляют следующее:

  1. По сложности и трудоемкости монтаж водяного теплообменника можно сравнить с прокладкой труб отопления. Иными словами, проблем с установкой не возникнет.
  2. Нагретые воздушные массы быстро отапливают даже помещение значительной площади.
  3. Отсутствие сложных механических и электрических узлов обеспечивает безопасную работу.
  4. Направлением потоков теплого воздуха можно управлять.
  5. Во время работы нет повышенных нагрузок на электросеть, а поломка не спровоцирует возгорание. К слову, агрегат очень редко выходит из строя, потому что не имеет быстроизнашивающихся деталей.
  6. Благодаря использованию горячей жидкости из тепловой сети техника не требует регулярных финансовых вложений.

Главный недостаток связан с тем, что калорифер нельзя использовать в бытовых целях в многоквартирных домах. Но в качестве альтернативы применяют аналогичные электрические устройства. Техника имеет внушительные размеры и требует контроля над температурой теплоносителя в тепловой сети, к которой она подключена. Подобное вентиляционное оборудование разрешено устанавливать только в местах, где температура окружающего воздуха не опускается ниже нуля градусов.

Классификация калориферов

классификация калориферов

По способу нагрева теплоносителя выделяют следующие калориферы для систем вентиляции:

  • Огневые модели применяют значительно реже, чем другие модификации.
  • Водяные агрегаты самые популярные, поскольку не требуют существенных затрат на обслуживание и приобретение. Главным минусом считают необходимость прокладки труб водоснабжения от тепловой сети к агрегату. Эти модели не подходят для бытового использования, но достаточно эффективны в общественных и производственных помещениях. В качестве теплоносителя можно использовать воду из сетей центрального водоснабжения, котла или ГВС. Это безопасные, простые и высокоэффективные приборы.
  • Паровые калориферы быстро нагревают воздух до требуемой температуры. От водяного аналога их отличает только вид используемого теплового носителя и увеличенная толщина трубок теплообменника. Технику обычно применяют на промышленных предприятиях, где несложно установить и обслуживать паропровод.
  • Электрические устройства для приточной вентиляции целесообразно использовать там, где важен простой и быстрый монтаж. В приборе нет циркулирующего теплоносителя. Его достаточно подключить к сети электроснабжения. Роль нагревательного элемента выполняет ТЭН. Однако с точки зрения расхода энергоносителя и экономичности этот вариант самый невыгодный. Обычно данную разновидность используют в качестве временного источника тепловой энергии, при проведении аварийных и разовых работ в качестве местного обогрева.

Важно! Схема приточной вентиляции с электрокалорифером может быть использована на объекте, площадь которого не более 150 квадратов.

Способы обвязки калорифера

обвязка калорифера

Обвязка калорифера приточной вентиляции зависит от выбора места монтажа, технических характеристик агрегата и схемы воздухообмена. Среди разных вариантов монтажа чаще всего используют смешивание рециркуляционных воздушных масс с приточными потоками. Реже применяют замкнутую схему с рециркуляцией воздуха в пределах помещения.

Для правильной установки прибора важно, чтобы система естественной вентиляции была хорошо налажена. Подключение калорифера к отопительной сети обычно делают в точке забора в пределах подвального помещения. Если есть принудительная вентиляция, то агрегат можно установить в любом подходящем месте.

Также в продаже есть готовые узлы обвязки в нескольких вариантах исполнения.

В комплект входят следующие элементы:

  • шаровые краны с байпасом;
  • обратные клапаны;
  • балансировочный вентиль;
  • насосное оборудование;
  • двух или трехходовые клапаны;
  • фильтры;
  • манометры.

Эти детали в составе узла можно комбинировать по-разному. Применяют жесткое присоединение элементов или монтаж с использованием гибких шлангов из металла.

Расчет мощности калорифера

При расчете мощности нагревателя для вентиляционной сети учитывают следующие данные:

  1. Объемы приточных воздушных потоков, которые подлежат нагреванию.
  2. Первоначальная температура подающегося воздуха.
  3. Требуемая температура, до которой нужно подогреть воздушные массы перед их подачей в помещение.
  4. Температура жидкого теплоносителя в сети теплоснабжения.
  5. Обязательно учитывают площадь поверхности теплообменника, метод обвязки и способ подключения к котельной или тепловой сети.

Для вычисления тепловой мощности прибора используют формулу Qт = L х Pв х Cв х (tвн — tнар), в которой:

  • Qт – это искомая тепловая мощность вентиляционного калорифера (Вт);
  • L – объемы приточных воздушных масс (м³/ч);
  • Pв – показатель из СНиП, который обозначает плотность воздуха (1,225 кг/м³);
  • Cв – значение удельной теплоемкости находят по таблицам из СНиП (0,24 ккал/кг°С);
  • (tвн — tнар) – разница между температурой внутри помещения и за его пределами (температуру внутри принимают по санитарным нормам для помещений определенного назначения, а показатели на улице берут по усредненным данным наиболее холодной пятидневки года для конкретного региона).

Сначала находят тепловую мощность, потом вычисляют габариты фронтального сечения, после подбирают подходящий агрегат. Затем выполняют расчет расхода теплоносителя.

Расход теплоносителя

расход теплоносителя

Для расчета расхода теплового носителя сначала нужно найти фронтальное сечение прибора.

Его определяют по формуле F = (L х P)/ V, в которой:

  • F – фронтальное сечение теплообменника калорифера;
  • L – расход воздушных масс;
  • P – табличное значение плотности воздуха;
  • V – скорость воздушного потока (3-5 кг/м²с).

После этого можно вычислять расход теплоносителя по формуле G = (3,6 х Qт)/(Cв х (tвх — tвых)), в которой:

  • G – потребность в воде для калорифера (кг/ч);
  • 3,6 – поправочный коэффициент для перевода единицы измерения из Ватт в кДж/ч, чтобы расход получился в кг/ч;
  • Qт – мощность нагревателя в Вт, которую нашли ранее;
  • Cв – показатель удельной тепловой емкости воды;
  • (tвх — tвых) – разница температур теплового носителя в обратной и прямой линии.

Обзор современных моделей

В продаже представлены водяные калориферы для сетей вентиляции разных марок. Наибольшей популярностью пользуются модели КСК, выпускаемые ЗАО Т.С.Т. Температура жидкости на входе составляет 150°С, а на выходе – 70°С. В агрегат можно подавать воздушные потоки с минимальной температурой -20°С. Рабочее давление жидкой среды составляет 1,2 МПа, а предельная температура – 190 градусов. Заявленный производителем рабочий ресурс составляет 13200 ч, что соответствует 11 годам службы. Нагревательные элемент калорифера выполнены из алюминия, а внешние конструкции – из углеродисто стали.

тепловентиляторы компании Volcano mini

Тепловентиляторы компании Volcano mini ценят за компактные размеры, эргономичность и практичность. Для регулировки направления потока воздуха стоят управляемые жалюзи. Мощность техники доходит до 20 кВт, а предельная производительность – 200 кубометров в час. В агрегате имеется двухрядный теплообменник, в котором циркулирует 1,12 л жидкости. Предельное рабочее давление составляет 1,6 МПа, а температура рабочей среды – 120°С. Прибор укомплектован регулируемыми жалюзи и имеет 44 класс защиты. Устройство подходит для бытового и производственного использования.

Итальянские модели Galletti AREO укомплектованы теплообменником из сплава меди и алюминия, вентилятором и дренажным лотком. Бренд выпускает агрегаты с мощностью 8-130 кВт, в которых может циркулировать теплоноситель с температурой 7-95°С. Рабочее давление 10 бар. Температура воздушной среды – 10-40°С. Встроенный вентилятор имеет 3 скорости и защиту электродвигателя. Класс безопасности – IP 55.

На заметку! Также на рынке представлены калориферы не менее популярных брендов Fraccaro, Тепломаш, Yahtec, 2VV, Zilon, Tecnoclima, Инновент, Remko, Pakole и Kroll.

Правила эксплуатации калорифера

Для правильной и бесперебойной работы нагревателей для систем приточной вентиляции важно соблюдать следующие правила эксплуатации:

  1. Нужно поддерживать определенный состав воздуха в здании. Требования к воздушным массам в помещениях разного назначения перечислены в ГОСТ № 2.1.005-88.
  2. При монтаже надо соблюдать рекомендации производителя, придерживаться технологии установки.
  3. Нельзя подавать в прибор теплоноситель с температурой выше 190 градусов. У некоторых моделей этот порог меньше, о чем сказано в технической документации.
  4. Давление жидкой среды в теплообменнике должно быть в пределах 1,2 МПа.
  5. Если нужно нагреть воздух в холодном помещении, то его подогревают плавно. Повышение температуры в течение часа должно составить 30 градусов.
  6. Чтобы жидкость не замерзла в теплообменнике и не разорвала трубки, нельзя допускать охлаждения окружающих воздушных масс вокруг прибора ниже нуля градусов.
  7. В помещении с высоким уровнем влажности устанавливают агрегаты со степенью защиты от IP66 и выше.

Производители водяных нагревателей не рекомендуют выполнять их ремонт самостоятельно. Лучше доверить эту работу сотрудникам сервисного центра. Не менее важно перед покупкой правильно рассчитать мощность прибора, чтобы он обеспечивал должную производительность и не работал вхолостую.

Подбор калорифера методом математического расчёта

Расчет производительности для нагрева воздуха определенного объема

Определяем массовый расход нагреваемого воздуха

— объемное количество нагреваемого воздуха, м.куб/час
p
— плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

— массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t
нач — температура воздуха на входе в теплообменник, °С
t
кон — температура нагретого воздуха на выходе из теплообменника, °С

Принцип работы водяного калорифера

принцип работы

Для начала разберемся в особенностях работы вентиляционной системы с водяными нагревателями, потому что схема приточной вентиляции с электрокалорифером немного отличается. Водяное нагревательное приспособление состоит из теплообменника и вентилятора.

Принцип его работы заключается в следующем:

  1. Через специальные воздухозаборные решетки, установленные на внешнем конце воздуховода, воздушные массы попадают в вентиляционные каналы. Решетки нужны для защиты от проникновения мелких грызунов, животных, птиц и насекомых.
  2. После этого воздух проходит через фильтры, где очищается от пыли, пыльцы растений, вредных примесей и других загрязняющих веществ.
  3. В калорифер поступает тепло из водяной магистрали. Благодаря этому теплу воздушные массы подогреваются до нужной температуры.
  4. При прохождении рекуператора поступающие воздушные потоки дополнительно греются за счет тепла удаляемого из помещения воздуха.
  5. Очищенные и подогретые массы при помощи вентилятора поступают в помещение. Благодаря установленному диффузору они равномерно распределяются по всей площади.
  6. Во время работы установки возникает много шума. Чтобы его снизить, установлены специальные шумопоглотители.
  7. Если система перестает работать, срабатывают обратные клапаны, которые перекрывают доступ холодным воздушным массам в помещение.

Конструкция калорифера отличается отсутствием собственного нагревателя. Его главные составляющие элементы выполняют следующие функции:

  • встроенный вентилятор направляет подогретые воздушные массы в помещение;
  • в теплообменник, состоящий из металлических трубок, поступает вода из отопительной системы.

По сути, система из трубок выполняет функции нагревательной спирали, как в электрокалорифере. По трубкам циркулирует горячий теплоноситель из системы отопления, имеющий температуру в пределах +80…+180°С. При прохождении воздуха через прибор он нагревается до нужной температуры. Вентилятор не только распределяет подогретый воздух по помещению, но и способствует его обратному удалению.

Преимущества и недостатки

применение калорифера

Использование калориферов в приточной вентиляции рентабельно для предприятий и учреждений, имеющих собственную систему теплоснабжения. Однако при хорошо налаженной работе системы вентиляции, правильном выполнении обвязки водяные калориферы можно использовать для обогрева коттеджей.

К преимуществам подобных приспособлений причисляют следующее:

  1. Монтаж достаточно простой. По сложности он не отличается от установки труб отопления.
  2. Благодаря подогреву воздушных масс и их равномерному распределению при помощи вентилятора система подходит для обогрева помещений значительной площади и высоты.
  3. Отсутствие сложных механизмов обеспечивает безопасную работу каждого составляющего узла. В конструкции нет быстроизнашивающихся деталей, поэтому поломки случаются редко.
  4. При помощи вентилятора можно регулировать направление потоков теплых воздушных масс.
  5. Главное достоинство заключается в том, что на отопление большого помещения не потребуются регулярные финансовые вложения. Расходы будут только на первых порах – на покупку оборудования и монтаж системы.

Основной минус использования водяных калориферов заключается в невозможности их применения в бытовых целях, а именно для отопления городских квартир. В качестве альтернативного варианта подходят только электронагреватели.
Электрический индукционный котел для отопления и его схема

Важно! Подобные системы подогрева воздушных масс разрешено устанавливать только там, где температура не опускается до минусовых показателей.

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

— массовый расход воздуха, кг/час
v
— массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

Классификация

Для создания в здании оптимального микроклимата применяется система калориферного обогрева, то есть принудительного подогрева с помощью оборудования, которое устанавливается в воздушных каналах.

В зависимости от того, какой теплоноситель используется, выделяют 4 типа калориферов:

    Паровые – применяются чаще всего на промышленных предприятиях, где выработка пара предусмотрена технологическими процессами.

паровой калорифер

электрический калорифер

водяной калорифер

Особенностью нагревателя является то, что состав поступающего с улицы воздушного потока не должен быть липким, волокнистым, содержать твёрдые частицы. Допустимая запылённость — не более 0,5 мг/м³. Минимальная температура забираемого воздуха -20 °C.

При выборе калорифера учитывают следующие факторы:

  • площадь помещения;
  • погодные условия в данном климатическом поясе;
  • мощность вентиляции.

Нагреватель устанавливают во внутренней части вентиляционной шахты, поэтому он должен соответствовать её параметрам (конфигурации и размеру).

Если производительность будет низкой, то прибор не сможет прогреть воздушные массы.

Если нет возможности установить калорифер с нужными параметрами, то последовательно монтируются несколько механизмов, имеющих меньшую мощность.

Вычисление значений массовой скорости

Находим действительную массовую скорость для калориферной установки

— массовый расход воздуха, кг/час
f
— площадь действительного фронтального сечения, берущегося в расчет, м.кв

Не справляетесь самостоятельно с расчетами? Отправьте нам существующие параметры вашего помещения и требования к калориферу. Мы поможем вам с расчетом. Либо посмотрите существующие вопросы от пользователей по данной теме.

Правила эксплуатации калорифера

Для длительной и бесперебойной работы важно придерживаться следующих правил эксплуатации:

  1. Нельзя превышать давление в трубопроводах выше нормируемых показателей, которые указаны для каждого прибора в технической документации.
  2. Состав воздушных масс в помещении должен отвечать требованиям ГОСТ 12.1.005-88.
  3. В процессе монтажа важно придерживаться инструкций и рекомендаций производителя.
  4. Запрещено использовать тепловой носитель с температурой, превышающей +190 градусов.
  5. Охлажденный воздух в помещении подогревают плавно. Температура должна повышаться каждый час на 30 градусов.
  6. Чтобы защитить трубки теплообменника от разрыва, температурные показатели не могут падать до минусовых значений.
  7. В производственном помещении с очень влажным или грязным воздухом устанавливают калориферы с уровнем защиты не ниже ІР 66.

Запрещено самостоятельно ремонтировать нагревательное оборудование. Это должны выполнять квалифицированные специалисты сервисных центров. Соблюдение всех перечисленных правил поможет продлить срок службы и защититься от аварийных ситуаций.калорифер водяной для приточной вентиляции

Расчет тепловой производительности калориферной установки

Подсчет фактической тепловой мощности:

или, если подсчитан температурный напор, то:

(Вт) =
K
х
F
х
средний температурный напор
где:

— коэффициент теплоотдачи, Вт/(м.кв•°C)
F
— площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.кв
t
вх — температура воды на входе в теплообменник, °С
t
вых — температура воды на выходе из теплообменника, °С
t
нач — температура воздуха на входе в теплообменник, °С
t
кон — температура нагретого воздуха на выходе из теплообменника, °С

Четвертый способ (см. рисунок 14) .

Применение сотовых увлажнителей дает возможность наиболее оптимального с точки зрения затрат энергии решить вопрос увлажнения воздуха. Задавшись фронтальной скоростью движения Vф = 2,3 м/сек приточного воздуха в сотовом увлажнителе можно достичь относительной влажности приточного воздуха:

  • при глубине сотовой насадки 100ммφ = 45%;
  • при глубине сотовой насадки 200ммφ = 65%;
  • при глубине сотовой насадки 300ммφ = 90%.

Построение процессов обработки воздуха на J-d диаграмме.

1. Параметры внутреннего воздуха выбираем из зоны оптимальных параметров:

  • температуру – максимальную tВ = 22°С;
  • относительную влажность – минимальную φВ = 30%.

2. По двум известным параметрам внутреннего воздуха находим точку на J-d диаграмме — (•) В.

3. Температуру приточного воздуха принимаем на 5°С меньше температуры внутреннего воздуха

tП = tВ — 5, °С.

На J-d диаграмме проводим изотерму приточного воздуха — .

4. Через точку с параметрами внутреннего воздуха — (•) В проводим луч процесса с численным значением тепло-влажностного отношения

ε = 5 800 кДж/кг Н2О

до пересечения с изотермой приточного воздуха — .

Получаем точку с параметрами приточного воздуха — (•) П.

Четвертый способ

5. Из точки с параметрами наружного воздуха — (•) Н проводим линию постоянного влагосодержания — dН = const.

6. Из точки с параметрами приточного воздуха — (•) П проводим линию постоянного теплосодержания — JП = const до пересечения с линиями:

Получаем точку с параметрами увлажнённого и охлаждённого приточного воздуха — (•) О.

  • постоянного влагосодержания наружного воздуха — dН = const.

Получаем точку с параметрами нагретого в калорифере приточного воздуха — (•) К.

7. Часть нагретого приточного воздуха пропускаем через сотовый увлажнитель, оставшуюся часть воздуха пропускаем по байпасу, минуя сотовый увлажнитель.

8. Смешиваем увлажнённый и охлаждённый воздух с параметрами в точке — (•) О с воздухом, проходящим по байпасу, с параметрами в точке — (•) К в таких пропорциях, чтобы точка смеси — (•) С совместилась с точкой приточного воздуха — (•) П:

  • линия КО — общее количество приточного воздуха — ;
  • линия КС — количество увлажнённого и охлаждённого воздуха — ;
  • линия СО — количество воздуха, проходящего по байпасу — GП — GО.

9. Процессы обработки наружного воздуха на J-d диаграмме будут изображаться следующими линиями:

  • линия НК — процесс нагревания приточного воздуха в калорифере;
  • линия КС — процесс увлажнения и охлаждения части нагретого воздуха в сотовом увлажнителе;
  • линия СО — байпасирование нагретого воздуха, минуя сотовый увлажнитель;
  • линия КО — смешение увлажнённого и охлаждённого воздуха с нагретым воздухом.

10. Обработанный наружный приточный воздух с параметрами в точке — (•) П поступает в помещение и ассимилирует избытки теплоты и влаги по лучу процесса — линия ПВ. За счёт нарастания температуры воздуха по высоте помещения — grad t. Параметры воздуха изменяются. Процесс изменения параметров происходит по лучу процесса до точки уходящего воздуха — (•) У.

11. Количество воздуха, проходящего через оросительную камеру можно определить по отношению отрезков

12. Необходимое количество влаги для увлажнения приточного воздуха в оросительной камере

Принципиальная схема обработки приточного воздуха в холодный период года — ХП, для 4-го способа, смотри на рисунок 15.

Принципиальная схема обработки приточного воздуха в холодный период года

Методы обвязки

Обвязка представляет собою каркас из арматуры, с помощью которого регулируется поступление горячей воды. Узел обвязки помогает контролировать производительность калорифера приточной вентиляции, управлять им и поддерживать в здании заданный температурный режим. Расположение узлов обвязки определяется местом установки, схемой воздухообмена, техническими параметрами оборудования. Применяют 2 варианта монтажа:

  • Рециркуляционные воздушные массы смешиваются с приточными.
  • Осуществляется только рециркуляция воздуха внутри помещения по замкнутому принципу.

С учётом этого существуют 2 метода обвязки:

  • 2-ходовыми вентилями – при неконтролируемом обратном расходе воды;
  • 3-ходовыми вентилями – при контроле за расходом воды в бойлерной или котельной.

Некоторые — выпускают узлы обвязки различной модификации, представляющие собою целые комплекты, состоящие из клапанов (балансировочных и обратных, двух и трёхходовых), насосов, байпасов, шаровых кранов, манометров, очистительных фильтров.

калорифер схема

Схема обвязки узлов калорифера для приточной вентиляции. (Шаровые краны, установленные на входе и на выходе, позволяют перекрывать воду, а термоманометр – контролировать температуру и давление)

Если естественная вентиляция налажена хорошо, то возможностей для успешной работы оборудования гораздо больше. Правильный выбор обвязки в таких случаях эффективен, как для нагрева больших площадей на производстве, так и для частных домов, коттеджей.

Калорифер, используемый для вентиляции, обычно подключают к системе отопления непосредственно в точке воздухозабора. Если действует принудительная вентиляция, то монтаж воздухонагревателя может быть проведён в любом месте. Калориферы для приточной вентиляции позволяют создать комфортный температурный режим как в промышленных, так и в жилых помещениях. Важно только правильно определиться с выбором теплоносителя, который будет наиболее эффективным (с минимальными затратами при максимальной производительности) в определённых условиях. Автоматизированная система – как, например, щит управления приточной вентиляцией с водяным калорифером, — позволит сделать использование нагревательных приборов для приточной вентиляции удобным и безопасным.

Ссылка на основную публикацию